
Beautifying Sketching-based Design Tool Content: Issues and
Experiences

Beryl Plimmer1 and John Grundy1, 2
1Department of Computer Science and 2Department of Electrical and Computer Engineering

University of Auckland, Private Bag 92019, Auckland, New Zealand
{beryl, john-g}@cs.auckland.ac.nz

Abstract
With the advent of the Tablet PC and stylus-based PDAs,
sketching-based user interfaces for design tools have
become popular. However, a major challenge with such
interfaces is the need for appropriate “beautification” of
the sketches. This includes both interactive beautification
as content is sketched and post-design conversion of
sketches to formalised, computer-drawn diagrams. We
discuss a number of beautification issues and
requirements for sketching-based design tools, illustrating
these with examples from two quite different sketching-
based applications. We illustrate ways of supporting
beautification, user interface design and implementation
challenges, and results from preliminary evaluations of
such interfaces.
Keywords: sketching-based user interfaces, sketch
beautification.

1. Introduction
The emergence of the Tablet PC, large Electronic
Whiteboards and PDAs using stylus-based input
mechanisms have led to demand for sketching-based
interfaces in diverse software applications (Damm et al
2000; Landay, 1997; Pomm and Werlen, 2004). Such
interfaces may allow users to sketch content, typically a
design of some sort, which is then progressively or in a
single operation converted into a formalised, computer-
rendered diagram or specification. Common applications
for sketching include early-phase software design (Damm
& Hansen, 2004; Chen et al, 2003); user interface design
(Plimmer & Apperley, 2003, 2004; Newman et al, 2003)
and CAD applications (Trinder, 1999).
A major challenge encountered in such environments is
the need to “beautify” sketched content, both during
sketching-based input and during conversion to
computer-rendered form (Plimmer & Apperley, 2003).
Consider the sketching-based user interface design tool in
Figure 1. In this example, the designer has drawn a rough
sketch of a Visual Basic user interface form design. When
finished they want this converted into a Visual Basic
form design using computer-rendered components shown
below.

During the sketching of this form design, the user may
want the sketched content modified incrementally. For
example, to group radio buttons they may want them
repositioned; when writing labels and text boxes they
may want them to be moved so as to not overlap; and
they may want to resize sketched content by drag-and-
drop but have the resized items still look fully “sketched”.
Similarly, when having the formal design at the bottom of
Figure 1 generated, they may want similar items sized the
same e.g. check boxes, text fields and radio buttons,
despite these being different sizes in the sketch; they may
want items aligned to grids and items grouped and
repositioned, and may want text in certain styles and
fonts.

Figure 1 FreeForm Sketch to Visual Basic Form

Developing sketching-based design tools that provide
appropriate sketch-time and formalisation-time
beautification techniques is not straightforward. From our
experiences in developing such tools we have identified
different kinds of sketching-based applications that
require different kinds of beautification techniques. In
addition, we have identified a range of beautification

Copyright © 2005, Australian Computer Society, Inc.
This paper appeared at the 6th Australasian User
Interface Conference (AUIC2005), Newcastle.
Conferences in Research and Practice in information
Technology, Vol. 40. M. Billinghurst and A. Cockburn,
Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

31

techniques which can be deployed at different times and
which are suitable for some applications and not others.
We have evaluated the usability of a number of these
techniques in two quite different sketching-based
software applications. We hope that our experiences will
be of help to others developing sketching-based design
tool user interfaces.
In the following section we present two design tool
applications which are the primary motivation for this
work, comparing and contrasting their sketch
beautification needs. We then describe a number of
beautification techniques we and other researchers have
identified and summarise their different behaviours and
constraints. We illustrate many of these techniques using
the two exemplar design tools and comment on
challenges in designing and implementing such interface
techniques. We review work done by other researchers in
this area, summarise evaluations of our beautification
techniques and outline key areas for future research on
sketching-based user interface beautification.

2. Motivation

We have been developing two quite different sketching-
based design tools – SUMLOW (Sketching UML On

Whiteboard) (Chen et al, 2003), and FreeForm (Plimmer
& Apperley, 2003, 2004). Both were designed to be used
on a large-screen Electronic Whiteboard and to provide a
shared, early-phase design environment. SUMLOW is for
software designers using the UML (Unified Modelling
Language). An example of using SUMLOW is illustrated
in Figure 2(a & b). In the left-hand screen dump, a UML
design sketch has been drawn, consisting of a mix of
UML use case (ovals and stick figure shapes), classes
(rectangle shapes with lines and text), and various
relationships (lines between shapes).

SUMLOW allows various UML diagrams to be sketched
and it incrementally formalises the diagram, recognising
UML notational symbols as they are drawn. A multi-
stroke input algorithm recognises complex shapes and a
single-stoke algorithm is used for text recognition. The
user manipulates the sketch, and after a time requests the
sketch be converted into a formalised UML design
diagram, as shown at the bottom of Figure 2 (b). Some
information may be lost in this conversion. This can be
due to both the sketching interface allowing non-UML
sketched content to act as secondary notation, and also as
some mixing of sketched UML notational symbols may
be invalid in the formalised model.

(a)

(b)

(c)

Figure 2. Examples of (a & b) SUMLOW UML design tool and (c) FreeForm storyboard.

FreeForm (Plimmer & Apperley, 2003) is software for
designing user interface forms. In addition to the form
sketch-space and ability to convert sketched designs as
shown in Figure 1, FreeForm also includes a storyboard
view Figure 2(c) and supports interactive checking of the
designs. The first phase of recognition is carried out
immediately a user stroke is completed so that functional
gestures can be actioned and overdrawing can remove the
underlying items.

Studies have shown benefits in working with informal
sketched designs in preference to formal diagrams (Goel,
1995; Plimmer & Apperley, 2004), therefore most
beautification and formalisation is left until the Visual
Basic form generation. FreeForm uses a single stroke
recogniser and then a rule base and dictionary for
combining simple strokes into Visual Basic widgets and
words. The rule base also includes beautification size
constraints. In addition to size, widgets are aligned on to a
grid and grouped appropriately.

32

In both of these sketching-based design applications there
is a need to “beautify” the sketched content, in some
cases during sketching-based design and in other cases at
the post-design phase. This need for beautification occurs
due to a number of issues:
• The designers want sketched content moved, resized

or otherwise modified as it is sketched in order to
implement interaction and/or syntactic constraints in
the application. For example, the UML Sequence
Diagram support in SUMLOW repositions some
elements as they are sketched to ensure a meaningful
diagram results. In FreeForm if a user draws one
element over another, it makes no sense in a form
design, so FreeForm removes the underlying
element.

• The designer manipulates diagram content which has
a flow-on affect on other content. For example, in
SUMLOW after a UML class icon is moved by
direct manipulation (drag-and-drop), association and
generalisation lines connecting the class to other
classes must be moved to maintain the connections
with the other classes. We want to preserve the look-
and-feel of the sketched content when doing these
modifications. Also, if a user resizes a UML class
icon, the enclosed attribute and method lists and
separator lines must be sensibly repositioned.

• When formalising a sketched design, the formalised
design requires application of layout and consistency
heuristics. For example, in FreeForm the form design
content like text boxes, labels and radio buttons
requires beautification to make these elements
consistent sizes and fonts. Also, attention needs to be
paid to grouping of elements to ensure sensible
beautification is done. In SUMLOW, UML class
icons are rendered using a consistent font style and
drawn to just enclose their name, attribute list and
method list. No overlap of labels and lines are
permitted as in the sketches.

• When formalising a sketched design, the conversion
of the sketched content to computer-rendered content
may require application of syntax rules. For example,
adjacent radio buttons that are more-or-less aligned
either vertically or horizontally on a FreeForm sketch
should be aligned and evenly spaced on a Visual
Basic form design. In SUMLOW, some UML
diagram elements can not be mixed in the formalised
UML diagrams and must be discarded or converted
into annotations during the formalisation process.

• After formalisation, further beautification may be
applied to the formalised design. For example, in
SUMLOW the UML diagram may be re-laid out i.e.
all content repositioned by a diagram layout
algorithm. In FreeForm, application of form design
styles e.g. font, line thickness, colour and shading
may be applied to all form elements of specific types.

• We may want to import a formal design e.g. UML
diagram into SUMLOW or Visual Basic form into
FreeForm, and display this as a “sketch” to
encourage exploratory design (Goel, 1995; Plimmer
& Apperley, 2004). This requires “de-formalising” a

computer-rendered design into a sketched-like
appearance.

3. Requirements
SUMLOW and FreeForm illustrate two fundamentally
different kinds of sketching-based applications. In
SUMLOW, an abstract design model is being constructed
using multiple, overlapping sketched views. In FreeForm,
a concrete design of a form-based user interface is being
sketched using a forms and an associated storyboard.
Within SUMLOW there are different kinds of diagrams –
use case, class and deployment diagrams all using box-
and-line style with any layout/positioning of items being
allowed. In addition sequence and state diagrams are
more constrained as layout of content has semantic
meaning when these types of diagrams are formalised.
These differences in concrete vs abstract design models
and flexible layout vs constrained layout diagrams leads
to quite different beautification techniques being suitable
for deployment in each environment.

3.1. Sketch-time Beautifications
Key sketch-time beautifications we have identified
include recognising a shape after initial sketching and
then making modifications to the sketch to highlight or
modify sketch content based on other related design
content. Clustering of sketch content is also required for
some applications, where multiple ink strokes are
grouped into a single element for further direct
manipulation e.g. move and resize. Overlap removal
between sketched content is sometimes necessary, as is
repositioning sketched content to ensure semantic
consistency of the design. When a sketch is resized or
moved, related sketched content may need to be
resized/moved/redrawn e.g. connecting lines, enclosed
shapes. Alignment and snapping to a grid may be useful
in some applications during sketch-time.

3.2. Formalisation-time Beautifications
When formalising a sketch, almost all sketched content
will be resized and aligned in some way. This will
typically involve applying resizing heuristics to sketched
content to ensure the formalised design content is
consistent in height and width. In addition, grid lines may
be used to reposition the resized, formalised content
horizontally and/or vertically. Whole or substantial part-
design layout algorithms may be applied to the formalised
design to improve the presentation of the formalised
design elements as a whole. Consistent styles e.g. colour,
line thickness, design element types and so on may be
applied to the formalised design elements.

4. Examples
In this section we illustrate some of the sketch-time and
formalisation-time beautifications we have implemented
in FreeForm and SUMLOW.

4.1. Draw-and-Change
When sketching a UML use case, actor, class or object
icon in SUMLOW, the tool adds “text entry” annotations
to the sketched content after recognition of the shape
type, as shown in Figure 3.

33

Figure 3 SUMLOW Use Case Sketch Beautification

For example, when sketching an actor shape, SUMLOW
adds a label text area, and moves this label area down as
the user writes the name. When recognising a UML class
shape, SUMLOW adds three text entry areas for class
name, attributes list and methods list. If necessary
SUMLOW resizes the sketched class icon to fit the text
areas.

4.2. Remove and Replace
In FreeForm an erase gesture (Figure 4a) will remove the
underlying ink. Also if an ink stroke is drawn over
another (Figure 4b) the underlying stroke is removed as
layered ink makes no sense in a form design.

Figure 4 FreeForm Removing and Replacing Ink

In SUMLOW, a draw over-and-replace algorithm is used
to resize existing sketched content. For example, to resize
a class icon the user pushes the pen down inside the
existing shape, then draws a replacement boundary for
the class, and then SUMLOW resizes the class icon
boundary and internal lines and text (Figure 5).

Figure 5 SUMLOW Resize

4.3. Move and Resize Element
To move a shape in SUMLOW, the user holds the pen
down inside the shape boundary. They then drag the pen
to the new position they want the shape and release it.
When a shape is moved, the various sketched content
making up the shape is moved with it. Lines connecting
the shape to others are perturbed to try and preserve
existing sketched connectors. For example, connectors
between Actor and Use Case shapes in a UML sequence
diagram are repositioned in this way (Figure 6).

Figure 6 SUMLOW Connection Between Elements is

Maintained When One is Moved

4.4. Move and Resize Group
In FreeForm the designer may decide to reorganise the
form, the designer changes to edit mode, selects the ink to
be move and drags and resizes.

Figure 7 FreeForm Initial Diagram

The sketchy appearance of the elements is maintained
during this process. Figure 7 shows a initial sketch, in
Figure 8 the address group and age/gender group have
been swapped and the address group has been resized

34

Figure 8 FreeForm Moving and Resizing

4.5. Alignment
In FreeForm, in preparation for conversion to a
formalised Visual Basic form design the sketch elements
are aligned onto a grid. The algorithm parses the sketch
three times during this process. First each identified
widget is positioned onto the grid by moving its top-left
corner to the closest intersection point: the ink strokes of
widgets that consist of more than one stroke, such as
words or the dropdown list in Figure 9, are together.
Sometimes two glyphs may gravitate to the same grid
position, the beautification process moves one of the
overlapping elements. Last, the algorithm parses the
sketch aligning groups vertically and horizontally.

Figure 9 Aligned FreeForm Widgets

Sequence diagrams in SUMLOW require special layout
as they are drawn, to ensure the semantics of the
sequence diagram are adhered to (all objects at top;
Liveness bars for method Invocations; staggered method
invocation lines). As sequence diagram content is
sketched, SUMLOW interactively moves objects to the
top of the diagram, pushes existing method invocation
lines down, and resizes method Liveness bars.
For example, when a user sketches an Actor or Object
shape in a sequence diagram view, these are
automatically moved above a line at the top of the view
(Figure 10). As method Liveness bars (rectangular shapes
between Actor and Object shapes) are added and
connected by method Invocation lines (arrowed lines
between Liveness bars), Liveness bars and Invocation
lines are automatically resized and moved down to admit
new ones.

Figure 10 SUMLOW Automatic Layout of New

Sketch Content in Sequence Diagram

4.6. Resize Formalise
FreeForm sizes and sets other attributes of generated
Visual Basic widgets by applying user-defined
beautification rules. In the options pane (Figure 11) the
user defines how a widget’s properties will be derived
from the sketch glyph. For example the height of a text
box may be set to be a unit of n pixels and this height can
be related to the height of either the primary or secondary
ink stroke. FreeForm calculates the height as being the
integer number of units in the height of the sketched
glyph. Other properties may be set with fixed, minimum
and maximum values. Where text is associated with the
Visual Basic widget, for example radio buttons, the text
can be used in the generation of the widget name.

Figure 11 FreeForm Properties Pane

The result of this beautification process is that the sketch
Figure 8 creates the form in Figure 12 where all the
widgets are aligned and of standard sizes.

35

Figure 12 FreeForm Beautified Visual Basic Form

When SUMLOW diagrams are formalised, shapes are
rendered in a standard style – line thickness, colour, size
enclosing text and so on. Diagrams can be laid out using
automatic layout algorithms, as the designs are abstract
rather than concrete as in FreeForm. For example, Figure
13 shows a formalised version of the bottom sequence
diagram from Figure 10. This is displaying Objects and
Actors using a fixed size, has repositioned the method
Liveness bars and connectors, and displays all text using
the same font size and style.

Figure 13. Formalised SUMLOW UML Sequence
Diagram.

5. Discussion
Our first version of FreeForm included none of the
sketch-to-form beautification described here. The Visual
Basic form represented a direct translation of the sketch,
even if the sketch appeared to be very tidy with glyphs
aligned and of similar size the resulting formalised Visual
Basic form looked untidy. The users in our first usability
study suggested a tidier Visual Basic form as one of the
highest priorities for system enhancements. In subsequent
studies users were satisfied with the beautified Visual
Basic form.
The current version of FreeForm moves the sketch glyphs
onto a grid as a precursor to creating the Visual Basic
form. In retrospect we are not sure that this is appropriate
as it disturbs the appearance of the sketch. We plan to
experiment with overlaying the sketch with regular
shapes that indicate the position of the Visual Basic
widget and allowing these shapes to be repositioned
without moving the underlying sketch glyphs. Further
studies will be required to assess the affect of this both on
the retention of the sketch-feel, that is so important
during early design, and the sketch-to-formal diagram
transformation.

Beautifying handwritten words that are part of a
diagrammatic design is problematic. Handwriting is
usually larger than the equivalent computer font both in
height and width, particularly on a digital whiteboard.
Deciding on appropriate font sizes from the handwritten
letters has been an ongoing problem in FreeForm,
currently FreeForm generates all fonts at the default font
size. We are aware that the Visual Basic forms generated
by FreeForm are stretched horizontally because of the
difference in size between handwritten and computer
generated fonts.
SUMLOW included the described beautification
techniques when we performed a usability study with the
tool for experienced UML designers. In general they
found the on-the-fly beautifications made by the tool took
some getting used to. For example, users had to learn to
pause while SUMLOW adjusted the size of a shape to
include one or more added text areas after initial
recognition of the shape. The draw over and replace
metaphor was found to be appropriate by most users,
though only after some time using the tool. Many users
assumed a more traditional CASE-style resize operation
was supported by SUMLOW instead of the more novel
draw over and replace to affect a resize. We used the
replace metaphor as we thought this was more like a real
whiteboard, whereas some users perceive the tool more as
a sketching-based CASE tool than E-whiteboard.
Moving, resizing and deleting shapes are all problematic
for existing sketch content in SUMLOW. We wanted to
preserve the sketch look-and-feel and hence we have a
simple algorithm for shifting and redisplaying existing
content like connectors between shapes. However some
users found this can produce ugly results and preferred a
real whiteboard-like metaphor of leaving existing content
for manual update by users.
The need for layout constraints in some diagram types
e.g. UML sequence diagrams, imposes order on some
SUMLOW sketches, whereas others have no such layout
and automatic resizing. Some users found this imposition
of constraints disconcerting at first. However in general
they accepted the additional editing constraints were
necessary to ensure at least a partially-sensible design
would result when the diagrams are formalised.
Currently SUMLOW imposes a default size and layout of
shapes when formalising diagrams e.g. UML class icons
are only rendered big enough to just enclose all of their
attribute and method text. Users expressed a desire to
sometimes be able to retain some diagram layout e.g.
overall shape size, in the formalised diagrams. For
example, to keep class icon size roughly the same as in
the sketch, as they were using size as a secondary
notation to denote importance. As with FreeForm,
deducing formalised diagram font style and size, along
with line thickness, might be useful in future to preserve
user-defined annotations of sketch content.
SUMLOW does not impose an automatic layout
algorithm on formalised diagrams apart from normalising
shape and text size. However, in general it would be
possible to do this as the diagrams represent abstract
software design rather than concrete form layout as in
FreeForm. Users did not request such a facility though

36

this may be useful if larger designs were constructed, to
enhance overall readability in the formalised version.

6. Related work
A number of systems have been developed to support
approaches to beautifying sketched diagrammatic content.
Pavlidis and Van Wyk (1985) describe a process of
inferring from the original diagram appropriate
constraints and then impose these constraints on the
beautified version. Their work focused on rectilinear
drawings such as hierarchy charts, it constrains the line
segments by angle, checking parallel, joining and
intersecting lines. They also discuss techniques for
locating and standardising clusters and evenly spacing co-
located items. AssistenzComputer (Bolz, 1993) analyses
diagrams that consist of straight line segments using a
user-defined knowledge base. This program looks for
gaps and miss-alignments, using magnitudes of deviation
to recognise defects. These are smoothed over in the
beautified diagram’s content. Igarashi et al. (1997)
transform pen strokes into straight line segments,
applying constraints so that lines lie at fixed angles and
connections and intersections are constrained. When the
user’s intention is ambiguous the system presents
multiple alternatives from which the user can then
choose.
Immediate morphing of stylus input into regular
geometric shapes (Arvo & Novins, 2000) and words
(Pomm & Werlen, 2004) requires ongoing accurate
recognition. The shapes are converted into computer-
rendered diagram content as soon as enough has been
drawn that the recognition algorithm can find a match.
Such tools are restricted to a small set of standard
geometric shapes and recognisable words.
A number of other sketch tools undertake some forms of
diagram beautification. For example SILK (Landay,
1996) supports sketching of user interface designs with
conversion into computer rendered content. Limited
beautification is applied to the content, mainly focusing
on recognising and rendering interface primitives. Demin
(Newman et al., 2003) is a sketch tool for designing web
sites. It immediately recognises simple symbols such as
rectangles and lines. Beautification varies depending on
the level the user is working at, for example in storyboard
view a line drawn to indicate navigation between pages is
smoothed and has a dot added to the source point and
arrow to the destination point. Ideogramic (Damm &
Hansen, 2002), a sketch-based case-tool, allows the user
to choose the level of beautification. The ink strokes can
be left unaltered or immediately recognised and
transformed into a formal UML shape such as class or
package widget. Formal and informal widgets can coexist
on the same diagram. It also includes layout
beautification.
A number of tools with sketch-based input perform
beautification immediately on recognising content.
Amulet (Myers, 1997) provides gesture-based
construction of diagram content but replaces the sketched
gesture immediately on recognition with computer-
rendered content.

7. Summary
With the increase in popularity of the Tablet PC, stylus-
based PDAs and Electronic whiteboards, sketching-based
design tools have become more accessible, However,
such applications require a range of “diagram
beautifications” to improve their effectiveness and
usability. A range of application domains mean some
tools suit adoption of incremental beautification while
others better suit post-sketch beautification of diagrams.
We have built and evaluated two tools that adopt these
different styles of beautification techniques. Experiences
from usability studies have shown that different
beautification techniques applied in appropriate ways
significantly improve the acceptance of sketching-based
design tools.

8. References
Arvo, J., & Novins, K. (2000). Fluid Sketches:

Continuous Recognition and Morphing of Simple
Hand-Drawn Shapes, Proceedings of UIST '00, San
Diego, pp. 73 - 80.

Bolz, D. (1993). Some Aspects of the User Interface of
Knowledge Based Beautifier for Drawings,
Proceedings of Intelligent user interfaces '93, pp. 45-
52.

Chen, Q., Grundy, J.C. and Hosking, J.G. (2003). An E-
whiteboard Application to Support Early Design-Stage
Sketching of UML Diagrams, In Proceedings of the
2003 IEEE Conference on Human-Centric Computing,
Auckland, New Zealand, October 2003, IEEE CS
Press.

Damm, C. H. Hansen, K. M. Thomsen, M. (2000). Tool
Support for Cooperative Object-Oriented Design:
Gesture Based Modeling on an Electronic Whiteboard.
In Proceedings of CHI 2000 on Human factors in
computer systems: the future is here, ACM Press, pp.
518-525

Damm, C. H., & Hansen, H. R. (2002). Ideogramic.
http://www.ideogramic.com/ accessed 30 August 2004

Goel, V. (1995). Sketches of Thought. Cambridge,
Massachusetts: The MIT Press.

Igarashi, T., Matsuoka, S., Kawachiya, S., & Tanaka, H.
(1997). Interactive Beautification: A Technique for
Rapid Geometric Design, Proceedings of UIST 97,
Banff, pp. 105-114.

Landay, J. A. (1996) SILK: sketching interfaces like
krazy. In Proceedings of CHI’96 on Human factors in
computer systems: common ground, ACM Press, pp.
518-525.

Myers, B.A. (1997): The Amulet Environment: New
Models for Effective User Interface Software
Development, IEEE Transactions on Software
Engineering, vol. 23, no. 6, 347-365, June 1997.

Newman, M. W., Lin, J., Hong, J. I., & Landay, J. A.
(2003). Denim: An Informal Web Site Design Tool
Inspired by Observations of Practice. Human-
Computer Interaction, 18(3), pp. 259-324.

Pavlidis, T., & Vanwyk, C. J. (1985). An Automatic
Beautifier for Drawings and Illustrations. ACM

37

SIGGRAPH Computer Graphics archive, 19(3), pp.
225 - 234.

Plimmer, B. E., & Apperley, M. (2003b). Software for
Students to Sketch Interface Designs, Proceedings of
Interact, Zurich, pp. 73-80.

Plimmer, B. E., & Apperley, M. (2004). Interacting with
Sketched Interface Designs: An Evaluation Study.,
Proceedings of SigChi 2004, Vienna, pp. 1337-1340.

Pomm, C., & Werlen, S. (2004). Smooth Morphing of
Handwritten Text, Proceedings of AVI '04, Gallipoli,
pp. 328-335.

Trinder, M. (1999). The Computer's Role in Sketch
Design: A Transparent Sketching Medium,, Proceedings
of Computers and Building, CAAD futures 99, Atlanta,
pp. 227-244.

38

